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It results from recent works of Prigogine and collaborators that one can 
construct a nonunitary operator which realizes an "equivalence" between the 
positive actions of a reversible dynamical  system and an irreversible Markov 
process going to equilibrium. We consider here this construction and we prove 
that (a) for K-shifts the transition probability of the associated Markov process 
is concentrated in the stable manifold of the transformed point by the shift with 
a point mass  concentrated on the deterministic trajectory; and (b) for Bernoulli 
shifts the measures which go to equilibrium are the same for the deterministic 
system and the Markov process. 

KEY WORDS: K-systems;  Bernoulli shifts; Markov processes; irreversibility; 
stable manifolds. 

1. INTRODUCTION 

A central problem in classical statistical mechanics is to find methods to 
associate (if possible without reduction of description) stochastic processes 
going to equilibrium to the reversible evoluations of classical mechanics. 
Recently Courbage, Misra, and Prigogine (1-4) have proposed a method that 
allows one to construct a Markov process "equivalent" to the reversible 
evolution of some dynamical systems, and this without loss of information. It 
is this construction that will interest us here. The problem is as follows: 
given a reversible dynamical system (s a,/~, T) one looks for an irreversible 
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Markov system, i.e., a/~-preserving Markov process (X2, a, ~, Q), which goes 
to equilibrium and is "equivalent" to the T evolution. More precisely one 
asks for the operator U*f  = f  o T-1 and the evolution operator Q* of the 
Markov system to be related by a positive nonunitary operator A:L2QI) 
LZ~u), such that A-1  is defined in a dense subspace and AU* = Q*A. 

In Section 2 we give the general mathematical frame (following Refs. 5 
and 6). We introduce the notion of g-deformat ion and prove its essential 
properties. Then we recall the result that for a K-automorphism the operator 
A can be taken (4) as A = Y~,~z 2,En + P0, where (2n)n~ z C (0, 1) iS a strictly 
decreasing sequence, P0 the projector in the space of constant functions, and 
E n = E ~" = E ~" - - E  ~"-I, with a n = Tnao and a 0 is the o-algebra defining the 
K-automorphism. 

In Section 3 we describe the previous Markov process in the case of K- 
shifts generalizing our previous results. (7'8) We compute explicitly the tran- 
sition probability Qw; we prove that if voo =limn-~o~ s > 0 it has a 
point mass concentrated on the deterministic trajectory and moreover that it 
is concentrated in the stable manifold (this concept being a generaliza- 
tion from hyperbolic differential dynamical systems) of the transformed 
point of the shift, i.e., Qw(x ,y~t (ax) )= 1, where y S t ( y ) =  { z E S Z :  
d(a"x,a"y)~,,_.oo 0}, with a the shift transformation and S the alphabet 
(Theorem 2). In the case of Bernoulli shifts we decompose Qw(x, .) in the 
fibers of the stable manifold of ax and we show (Proposition 1) that in each 
fiber it is distributed uniformly with respect to the restriction of the Bernoulli 
measure. 

Finally in Section 4 we study the measures going to equilibrium (weak 
convergence). In Theorem 3 we prove that in the case of Bernoulli shifts the 
set of probability measures converging to the invariant measure is the same 
for the dynamical system and for the associated Markov process. But the 
operator QA induced by A acting on this set is not bijective. 

2. DYNAMICAL SYSTEMS, MARKOV PROCESSES, 
DEFORMATIONS 

2.1. Dynamical Systems and Markov Processes 

Let (.O, a)  be a measurable space (a a o-algebra over X2) and T: .C2 -~ S2 
a measurable transformation. Then T acts on the space p(O, a) of probability 
measures: Tr(A) = r(T-1A),  VA C a. If/~ = T/~ we say / t  is T-invariant and 
(/2, a,/t, T) is a dynamical system. In the rest of this article r is a fixed T- 
invariant measure. In the space M of real measurable functions we define the 
operator U : M ~ M- by Uf = f o T, f C M. If  f > / 0  then Uf >/ 0 ( U is positive 
on M) and U1 = 1 (U preserves the constants). Let S ~ )  = { f C  M:  fifilp = 
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(f iflp &)l/p < oo }, p >/1, and let (LP~), II lip) be the Banach space whose 
elements are the equivalence classes (for the relation/~-a.e.) of t P ( u ) .  In 
LZ(p) the norm II Ir2 (that we denote 1] 13 is induced by the scalar product 
(f,  g ) = f f g d t ~ .  The operator U acts on LP(~) and the T-invariance of 
implies II Ufl]p = Hfl[p, Vp > 1. In L2(p) the adjoint operator U* is positive 
and preserves the constants. We say (f2, ct,/.t, T) is mixing if 
(Unf, g )~ ,_ .~  (f, 1)(1, g), f ,  g C L2~) .  Mixing implies ergodicity: U f = f ,  

f C L 2 ~ ) ~ f = c o n s t = ( f ,  1). If T -~ exists and is measurable (i.e., T is 
bijective and bimeasurable), we shall say (f2, a,/~, T) is reversible. Then U is 
invertible, U -1 = f o  T -~, and in L2(~) is unitary. An equivalence relation 
can be defined between dynamical systems (6) which preserves ergodicity and 
mixing. We shall only consider Lebesgue space, i.e., (f2, a ,~)  is isomorphic 
to the space ([0, 1], ctz,,,~w), where a w and /tz,, are, respectively, the 
Lebesgue ~-algebra and a Lebesgue-Stieltjes measure. We shall say a rever- 
sible dynamical system is a K-system if there exists a sub-a-algebra a 0 of ct 
such that 

a o c Ta o (2.1') 

= N T% 10, o}  (2.1") 
nEZ 

i.e., a _ ~  is trivial, 

aoo= V rnao = a (2.1"') 
n e Z  (u) 

where =(,) stands for equality except for sets of measure zero. K-systems are 
mixing and invariant under equivalence. Putting a ,  = T"ao, n E Z, one has 

{O,.O) = a o o c . . . c a ,  a . . . a o o = a  (2.2) 
(u) 

T a , = a n +  1, n E Z  (2.3) 

Let L2(u let,) = { f ~  L2( ,u) : f i s  c G measurable} and let K 0 be the space 
of constant functions, then 

Ko=L2(t- t la  oo)c. ...c. LZ(ula , )c .  ... . cLZ~laoo)=L2(u)  (2.2') 

where G 1 .~ G 2 if G 1 is a closed linear subspace of G2, and U-lL2(u ]a , )  = 
LZ(I.tlan+,). Let Hn=L2O.tlan) OL2([.t]Otn_l). One has H ,  4:{0} and 
U-1H,  = H,+ I, Ko U -a = U-1Ko = Ko, I = Y~n~z E ,  + Po, where E n 
(respectively, P0) is the orthogonal projection on H n (respectively K0). The 
orthogonal projection on L 2(/a ]an) is the conditional expectation value E '~~ 
over an, and we note R n = E  '~. this operator which is positive. Then E n = 
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R , - - R , _ ~  and one has [in Lz ( ,u ) ]E ,+~U - !  = U IE, ,  U-1Po= 
Po U-~ = P 0 .  Due to (2.2) R , f ~ , _ , ~ f ,  Rnf -~ ,_ ._  ~ P a l  #-a.e. in L~2~) and 
for a n y f E  t 2~u ) .  

We consider now shift dynamical  systems. The finite set S =  {1,...,s} 
will be the alphabet of the shift and the space the product space X - -  S z with 
the product o-algebra ~ = P (S)  z where P(S)  is the class of subsets of S. 
is the Borel a-algebra of the compact  metric space (X, d) where d(x, y ) =  
ZnEz 2-1"l d~(X,, Yn), with x = (x,) ,E z G X,  y = (Y , ) ,~z  C X, d~(s', s") = 0 
if s' = s " ,  ds(S ' ,S")= 1, if s '  # s " .  ~ is generated by the countable 
semialgebra of cylinders ~: B(k,  m) (io,..., it) E ~ if B(k, m)(io,..., il) = {x E X:  
x k = i  o ..... x re=it}, for k, m E Z ,  l = m - k ,  i o ..... i / E S  fixed. A basis of  
neighborhoods ~(x) of  x ~ X is the set of cylinder neighborhoods centered on 
x = B(k ,m) (x )  = {y E X:  yk = xk,..., Ym = Xm}" 

The shift transformation a :  X ~  X, x --* ax, where (ax) ,  = x ,+  t, n E Z, 
is a homeomorphism, and consequently bimeasurable. Any a-invariant 
measure p defines a reversible dynamical  system (I2, a,/d, ~r) called a shift 
dynamical system. A class of  a-invariant measures are the Bernoulli 
measures: let ~r = (~r 1,..., ZCs) be a probability vector (zti > 0, Y~i~s zri = 1) and 
define/_t~(B(k, m)) = Z~io... z~i~; then (X, ~ , p ~ ,  a)  is a Bernoulli shift. In the 
shift (X, ~ , p ,  a) the cylinders X i = {x C X:  x o = i}, i C S, define a partition 
a o over X:  a o = {Xi[i E S}. We note ~ ' ,  = V ~  aiao the ~r-algebra generated 
by {atao, i ~ n } ,  ~ o o = ~ ,  i.e., a o is a generating partition. If 3 _ o ~ =  
0~<o ~ ,  is trivial the K-system (X, ~ , p ,  a)  is called a K-shift. For  shifts a 
version of the projectors R ,  = E so" can be chosen verifying pointwise for any 
cylinder B = B(k, m) 

R . ~ .  = ~ ,  n >1 - k  

Rn~B=~B( . . . .  )Rn~B(k, (n+ 1)), --m ~< n < - k  

(2.4) 

(2.4') 

(2.4") 

where CA is the characteristic function of the set A. In the case of Bernoulli 
shifts we can furthermore specify the version of R ,  as 

Rn~B~k,,,)(x) =p,~(B(k,m)(x)),  n < --m (2 .4" )  

We consider now Markov processes. A transition probability from the 
space (O, a)  to the space (,(2', a ' )  is a function Q: ~ • a '  ~ [0, 1 ], (co, A ') 
Q(co, A ' ) ,  satisfying (a) Q(co, .) is a probability measure on (s a ' ) ,  co ~ 12; 
and (b) Q ( . , A ' )  is a-measurable YA' E a ' .  If (O, a)  = (O' ,  a ' )  the transition 
probability defines a stationary Markov process (.(2, a, Q).~5) If T: .O ~ so2 
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is a measurable transformation it induces a transition probability 
Qr(cO, {To)})= 1. Q acts over measures Q: p($2, a)~p(f2', a') as 

(Qr)(A') = f  r(doo) Q(oo, A'), A' C a', r E p(~, a) 

and over the space of bounded functions Q: J~( t? ' ,  a')--+ ~(~b(.c2, a) as 

(2.5) 

(Qf)(oo)=ff(eo')Q(~,&o,), coG.o, f c ~ ( /2 ' ,  a') (2.6) 

If we note ~A, the characteristic function of A'E  a', then Q(~o,A')= 
(Q~A,)(o)). For r C p(~, a), f E ~ ( J ? ,  a) we define r ( f )  = f r(dco)f; then 
(Qr ) f  1 = r(Qfl), f l  c ~g~b(D', a'). Let It ~p(X?, a), (X2, a, it) Lebesgue; then 
one can extend Q to f l ~ u ) .  If Q~u = i t ' ,  f Q f d i t = f f d i t ' , f E L P l ~ ' ) .  The 
operator Q: L # ~  ') ~ 2 , ~  is positive and preserves the integral, Q1 = 1. 

Since (Qf)2 ~< Q(f2) one has f (Qf)2 dit ~< Ilfll2; consequently Q: 
L 2 ~ ' ) ~ L 2 ~ )  is positive, preserves the constants, and IIQH = 1. The same 
holds for the adjoint Q*. Reciprocally, from an extension of Propositions V- 
4-2 and V-4-4 of Ref. 5, and by using the Lebesgue structure of the 
probability space, one has the following lemma. 

Lemma 1. Let ($2, a, it) and (t2', a ' , i t ' )  be Lebesgue, and V: L2(B)-~ 
L2(,u ') a positive bounded linear operator such that V1 = 1, V*I = 1. Then 
there exists a transition probability Qr* from (~ , a )  to (.O',a ')  with 
Qv*it = i t '  and such that for a n y f ~  L : ~ ' )  the function Qv,fbelongs to the 
equivalence class V*f (then Qv* = V*:L2(, u') ~ L 2 ~ )  and Qv**= V). 

We shall say that V* induces the transition probability (which is not 
unique) Qv*. In an analogous way one can construct a transition probability 
Qv induced by V from (~ ' ,  a ' )  to (s a), Qvit' =It. If (.O, a, it) = ($2', a, it ') 
these transition probabilities induce Markov processes preserving the 
measure It. If Qv* and Q~. are two transition probabilities induced by V* one 
has Qv.~A,(co)= Q~.r It-a.e. and since the space are Lebesgue there 
exists a set ~2~ C a, It($2~) = l, such that Qv.A,= Q;~*A, on X21, VA' ~ a ' .  

Let Q be a transition probability in ($2, a), i.e., from (.(2, a) to itself, 
which preserved It : Q_fl = It, and (.(2, a, It) Lebesgue. We shall say (.(2, a, It, Q) 
is a Markov system. An initial state at time zero will be a measure r 0 C 
p(~, a) evolving by (2.5), i.e., at time n > 0 the state will be the measure 
r n = Qnr 0. If r o has a probability density f0 C L2~u) with respect to It, then at 
time n > 0 this probability density will be fn= Q*"fo, where 
Q*: L2(B) ~ L2(fl) is the adjoint in LZ(,u) of the operator Q defined by (2.6). 
Obviously the dynamical system (.O,a, it, T) defines a Markov system 
(~ ,a ,  it, Q) where the transition Q is induced by U, U f = f o  T, and 

822/37/1-2-12 
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Q(o), {To)}) = 1. One has Q --- U on L2(o)) and in the reversible case Qv* = 
U* = U-1 is the evolution operator (we shall note Q -- Qr). 

Definition 1. We shall say the Markov system (.Q, a,/~, Q) goes to 
equilibrium if an(fo ) -- II Q* "fo - 1 I I I  n 0 for  any density f0 ~ L 2(/j) _ Ko" 
The notation a n .Ln_~o~a means that the sequence of real numbers (an)n~>l 
converges to a and is strictly decreasing. 

The property of going to equilibrium implies 

Ila*nf -<f ,  1)ll ,0, 
/7 --*0(3 

f C L Z(t.t) 

and also that Q* is mixing: 

(Q,nf,  g)  = (f ,  Ong) , (f, 1)(1, g), f ,  gELE(,u) 

which implies the ergodicity of Q*, i.e., Q * f = f ~ f =  const. One can define 
a notion of pointwise equivalence between Markov systems analogous to the 
one of dynamical systems. This equivalence relation will preserve ergodicity, 
mixing, and the property of going to equilibrium. For definitions and results 
concerning measure-preserving Markov processes see Ref. 11, Chap. XIII. 

We note that no nontrivial reversible dynamical system goes to 
equilibrium and that a reversible Markov system (O, a,/1, Q), i.e., such that 
there exists a transition probability R:  • • a ~  [0, 1] satisfying 
RQ = QR = 1 on ~'+ = { f ~ r  f> /0} ,  is necessarily induced by a rever- 
sible dynamical system. One also has that a unitary operator V" L 2 ~ ) ~  
L2~)  such that V1 = 1, V>/0, is induced by a/~-preserving transformation 
T: Vf  = f o T (see Ref. 10). 

2.2. Deformations and Intrinsically Random 
Dynamical Systems 

I: We shall say that the Markov system (D', a ' ,ct ' ,  Q') is a (A, 9 ) -  
deformation of the system (/2, a,/~, Q) if there exists a bounded linear 
operator A:  L2(/t)~L2(~') ,  and a dense linear subspace 9 c L 2 ~ )  such 
that 

I1: AQ* = Q'*A, Iz: A injective in 9 

13: A I = I ,  A*I  = 1; 1 4 : A > / 0  

15: 9 '  = A ( 9 )  dense inL2~  ') 

These properties imply A* injeetive, positive, RanA* dense, IIAII-- 
[IA* I[ = 1, QA* = A * Q ' .  Since the probability spades are Lebesgue and A* 
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satisfies the hypothesis of Lemma 1, we can associate to this operator a tran- 
sition probability QA* from (t2, a) to (/2', a ' )  and one has the conjugation 
relation QQA*f = QA~ Q~f/~-a.e. f E ~/~_. We can find a set of full measure 
01 such that QA.Q'=QQA. as equality of transition probabilities from 
(ff~l' atol) to (.Q', a'). One has QA,(Qr)= Q ' (aa . r ) ,  r~p( t2 ,  a), and also 
QA,(Qn-c) = Q'n(QA.r), n ~ O. One can easily show that if (.c2', a ' , p ' ,  Q') is 
a (A,D)-deformation of (t2, a,~t, Q), then Q'* ergodic implies Q* ergodic 
and Q'* is mixing iff Q* is mixing. We restrict ourselves now to the case of 
deformations in the same probability space. 

Definition 2. The Markov system (/2, a,/l, Q') is a D-deformation of 
(-O, a,/~, Q) if ~ is a dense linear subspace in L2~)  and if there exists a 
bounded linear operator A:L2(,u)~ L2~u) satisfying 11 to 15. 

Definition 3. We shall say that a dynamical system (.Q, a,/~, T) is 
intrinsically random if it admits a D-deformation (.Q, a,/2, Q) going to 
equilibrium. (4) 

One can easily show that a reversible dynamical system which is intrin- 
sically random is mixing. If we restrict ourselves to D '  = L 2 ~  ') in 15 then A 
would be a bijection with A-1 bounded and only the trivial dynamical 
systems (a trivial) would be intriniscally random. 

Theorem 1. A K-system contains a Y-deformation going to 
equilibrium. Consequently it is intrinsically random. 

This theorem is proved in Refs. 1 and 2 for Bernoulli shifts and in 
Ref. 4 for K-systems. We recall here the main steps of the construction of the 
D-deformation. 

We use the notations of Section 2.1. Let (O, a, lz, T) be a K-system, 
Uf = f o T and a,  the sequence of a-algebras in formula (2.2). We construct 
the operators (E, in the projector o n  Hn) 

A = 2nEn + Po, W = ( ~ z  V~En + Po) U (2.7) 

In (2.7) the sequence (2,)n~ z is strictly decreasing in (0, 1), 
limn_. ~ 2 n = 2  o~= 1, l imning, n=,1.oo=0, and such that the sequence 
(vn),~ z, vn=2~-12n+1, is also strictly decreasing. The sequence ) . , =  
(1 + a ' )  -1, a > I, satisfies all these requirements and v ~ = l i m , _ ~ v n =  
a-1 < 1. One easily checks that W satisfies all the properties for V in 
Lemma 1 and consequently W induces a Markov system (I2, a,l.t, Qw). 
Taking D =  {f: ~ , ~ i f n  + b, fn C H n, b E ~, I finite} as the dense linear 
subspace in L2~),  one can verify that A satisfies all the properties in 
Definition 2, in particular the conjugation relation Ia which here reads 
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A U*= W*A and consequently the Markov system (.(2, a, lt, Qw) with tran- 
sition probabil i ty Qw(co, A)= W~A(CO ) is a ~ -de fo rma t ion  of the K-sys tem 
( O , a , p , T ) .  We note that U * ~ = U ~ = ~  and that A : ~  is a 
bijection. 

One has for t integer, t >/0, that 

l • ( t )  _ _  , ~  - 1 2  
n - -  " * n  " ' n + t  

and using the property of  strict decreasing of (2n) one proves that 
[IW*~f0--P0f0[l .[t-~o~ 0, for any density foCLZ(p)--Ko, i.e., the Markov  
system (.(2, a,p, Qw) converges to equilibrium. Since the inverse dynamical  
system (.(2, a,p, T -1) of a K-system is also a K-system we can also construct 
in an analogous way an irreversible Markov  process which is a ~ -  
deformation of T -1 and which goes to equilibrium [using the partition a ;  
wich satisfies (2.1) for T -  1]. 

3. TRANSITION PROBABILITIES OF 
~-DEFORMATIONS OF K-SHIFTS 

Let (X2, d) be a compact  metric space and T: .(2 - ,  -(2 a homeomorphism.  
The stable (unstable) manifolds are the sets 

x?~t(co) = {co' ~ ~ :  a(r"co',  r"co) , 0 /  (3.1) 
n - * o 0  

o~~ = {co' e x?: d( r -"co ' ,  v-"co) ,0} (3.2) 
n --*(3G 

s t  u n  

One has un _ st X2 r ~(co) - X2 r (co)" In the case of  the shift a : X ~ X these manifolds 
are Borel sets in X: 

X 2 ( x ) = { y e X : y i = x i ,  Vi)k(y)forsomek(y)},  x ~ X  (3.1 ' )  

X~n(x )={yEX:y i=x i ,  Vi<~k(y)forsomek(y)}, x C X  (3.2 ' )  

We consider now K-shifts. According to Theorem 1 we can construct a 
Y-deformat ion  going to equilibrium with transition probabil i ty Q~ induced 
by W given by (2.7). We prove the following: 

Theorem 2. Let ( X , ~ , / t , a )  be a K-shift. Then it admits a 9 -  
deformation (X, ~ ,  p, Qw) succh that  (a) Qw(x, X2(crx))= 1, x ~ X; (b) Qw 
has a point mass  if voo > 0. For Bernoulli shifts it is concentrated on the 
t ransformed point by the shift: Qw(X, { a x } ) =  voo. 
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Proof. From (2.7) and using E .  = R .  - R . _  1 one has 

W = ( ~  v,~R, + vooR~ ) U, v, = v,, - v,+ ~ 

Roo = E  ~ is the identity operator. The operators W,,-R, ,_IU satisfy all 
the properties of V in Lemma 1 and consequently induce Markov systems 
(X2,3,la, Qw,), n EZ ,  with transition probabilities Q,,=Qw, given by 
Q,(x,A)= W,~A(x ). One has U~B(k,rn)(y)=~B(k+l,m+l)(a-ly), and using for 
R n the version (2.4) one obtains for the infinite cylinder B(k, oo)(y) the 
result Q,,+l(x,B(k, ao)(y))=~,~k+l,~)~ ~ o~(X), n>~--(k+ 1). Then for 
y = ax one has Qn+~(x, B(-(n  + 1), ao)(ax)) = 1, n C Z. Putting Q~(x,A) = 
U~A(x ), A C ,~, one obtains the transition probability" Qo~(x, {ax}) = 1. From 
the previous expression of W we conclude that Qw(X,A)= W~A(X ) can be 
written as 

Qw(x,.)=~_~,,Qn+l(x, )+v~Qo~(x, ) (3.3) 

One has Y~t(ax)= U,~z B(n, oo)(ax), and consequently Qw(x, xst(ax))= 1, 
which is part (a) of the theorem. On the other hand we can compute directly 
Qw(x, B(k, m)(ax))= W~8(k,m)t,~)(X) using (2.4) to (2.4"). One obtains 

Qw(x, B(k, m)(ax)) = V ynR,,~stk+ ,.m+l)(~)(x) 
n < - ~ m + l )  

n = - - ( k + 2 )  

+ ~ gnR,,~,(k+,._r + V (k+l) (3.4) 
n= - ( m +  It 

When m--* oo one shows that the first sum goes to zero and 
(3O 

Qw(x, B(k, oo)(ox)) = V-~k+l) + ~. Y-r 1)R-(k+,+ 1) 
t / = l  

x ~.~k+,,k+n~(X) (3.5) 

If k - - , - o o  the sum in (3.5) is non-negative and since B(-oo, oo)(ax)= 
{ax} we obtain Qw(x, {ax})/> v~. In an analogous way it is easy to see that 
ax is the only point with voo for Bernoulli shifts. 

In the case of Bernoulli shifts we can give an explicit form for a natural 
version of the transition probability which is obtained using formulas 
(2.4)-(2.4")  for R. .  One obtains 

- ( k + 2 )  

m~B(k,m)(Y) = Z pn~B(_n,m+l)(o_ly)fl,~(B(k,-(n + 2 ) ) ( y ) )  
n=  - ( m +  1) 

71- ]~ (k+l)~B(k+l,m+l)(a_ly) ~- (1 - -  V ( m + l ) ) f l T t ( n ( k  , m)(y)) ( 3 . 6 )  
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and consequently [compare with (3.4)] 

-(k+2) 
Qw(x, B(k, m)(ex)) = ~ Y, IJ~(B(k, - (n  + 2))(ox)) 

n-  -(m+ 1) 

+ v (k+l) + (1 -- V (~.l~)#,~(B(k, m)(ex)) (3.7) 

For a shift we can define the fibers )~t(y)= {z : z j  = yj, k + 1 ~ j ,  zl, 4 = Yk} 
and the stable manifold of y is the disjoint union x ~ t ( y ) =  
[OkezX~t(y)] U {y}. We consider the sets B ~ ( k -  r, m)(y) = {z: Zk_ r = 
i ...... Z k = i o ~ Y k ,  Z j=y i ,  k + l < ~ j < ~ m }  which are cylinders B ( k - r , m )  
(it,'", i0, Yk+~ ..... Ym)" Using' (3.6) one obtains when m--, oe for Bernoulli 
shifts 

Qw(x, Bf(k  - r, oo)(ox)) = zcio ... 7"CirTEk + I(X)--1 
of) 

n=k+2 
(3.8) 

with the notation zrl(x ) - ~xr We have 

2 ~ t ( y ) =  (..) B ~ ( k - r ,  oo)(y) 
il,...,in 
ior 

a disjoint union; then 

Qw(X, 2Skt(Gx))= (~k+l(X) 1__ 1) ,...,@ ~_nT~k+l(X) "'" 7~n_l(X ) 
n=k+2 

and a simple calculation shows Qw(x, 2~, t (ex))=  1 - v ~ .  This provides an 
alternative proof of Theorem 2 since from (3.5) we see (taking the limit 
k ~  - o o ,  m ~ oo) that Qw(x, {ex}) = vm. This proof  also applies for K-shifts 
and was given by us in Ref. 7 for the Baker system. 

Let us consider now in 2~t (y)  the e-algebra ~k(Y)  generated by the sets 
B~(k--r ,  oo)(y). In the space ()(skt(y),~k(y)) the measure ~t~ induces a 
measure #k defined by Pk(B~(k - r, oo)(y))  = nio ... rCir. 

On the other hand the measure Qw(x,.)  induces in (2~t(ox), ~k(eX)) a 
k measure Qw(x, . )= Qw(x,. ~2~ t (ox ) ) .  Defining [see (3.8)1 

h(y,k)=Zck(y) -1 ~ ff ,,zck(y ) . . .  zcn_2(y ) 
n-k+2 

we have the following proposition. 

Proposition 1. For  Bernoulli shifts the part without point mass of 
the transition probability Qw is decomposed along the fibers {xskt(ex)}kez . If 
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Qw is the measure induced in the kth fiber, it is absolutely continuous with 
respect to the measure/2k in (J?~,t(x), ~k(aX)), and one has 

dQ (x, .) 
d/2  (z) = h(Gx, k), z 2 '(ax) 

4. MEASURES CONVERGING WEAKLY TO EQUILIBRIUM IN 
BERNOULLI SHIFTS 

Let (X?, a, At) be a probability space with .(2 a compact metric space and 
a the Borel a-algebra. We denote by c~A the boundary of the set A c ~.  A 
sequence of probability measures (v.).>~ on (X2,tz) converges weakly to/2; 
we write v. ~ . ~ o o / 2 ,  if v.(A)~/2(A), YA C a such that/2(OA) = 0. The set of 
measures which converge weakly to/2 is convex. A sufficient condition for 
v. w%,o~/2 is v.(A)--+/2(A) for any set A in a family a o c a  verifying the 
following condition (E): it is closed by intersection, generates a, and for any 
ball B(co, ~) ~ / 2  there exists A ~ a 0, A ~ B(co, e) with co interior point of A 
(see Corollary 1 of Theorem 2.2 in Ref. 9). We remark that in the case 
(X, ~ )  the set of cylinders r satisfies (E) and consequently in that space 
v, w,,.~oo/2 if v,(B)-~,_~o~/2(B), YB ~ ~. 

Definition 4. Let (/2, a,/2, Q) be a Markov system. We shall say that 
the probability measure r on (/2, a) converges to the equilibrium /2 by the 
action of Q; we write ~ E Eq~u, Q), if Q'v w ~,-~oo/2. 

Then Eq~,  Q) is convex. We remark that (Qnr)(A) = 
f r(dco) Q(")(co, A)= f v(dco) Q"~A(co), where Q(")(co, A) is the transition 
probability from co to A in n steps. If r is absolutely continuous with respect 
to /2, r~/2 ,  and if dr/d/2~L2(,u) one has Q'r(A)={dr/d/2, Q"~A)= 
{Q*" dr~d~2, ~A), which goes to equilibrium /2(A) if Q is mixing and then 
v E Eq(~, Q). 

Let ~ (ao )  = {~.nelan~A + b: a, C ~, bE ~, A, C ao,I finite} where 
a o verify condition (E); then ~(ao)  is dense in L2~u). We suppose that 

~ ~ (ao )  and Qa,~'~(ao)c ~(a0) (which is the case for Bernoulli shifts); 
then we have the following proposition. 

Proposition 2. If Q' is a ~-deformation of Q the Markov process 
QA* satisfies Qa.(Eq(,u, Q)) ~ Eq(,u, Q'). 

Proof. It is enough to prove that if r ~ E q ~ , Q )  then 
(Q'n(QA.r))(~A)-~,~oz/2(A) for A E a 0. From (2.8) we have Q'"(QA~r)= 
QA,(Qnr) and from (2.6) Qa.(Qnr)(r (Q"T)(QA.~A) which converges to 
/2(Qa*~A) since Qa*~A ~ c-~(a0). Moreover/2(Qa*~A) = (A*~A, 1)=/2(A). 
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If  (Y2, a, ~, T) is a dynamical  system a probability measure r converges 
to the equilibrium/2 by Qr  iff 

T(T'A) ,/2(A), VA ~ a ,  /2(c~A) = 0 (4.1) 
n ~ o o  

or on the sets A C a 0, with a 0 verifying (E). We treat now the case of  the 
Bernoulli shift (X, ~ , /2 ,  a). We recall that 

Wt= ( ~ v( , t)E,+Po)U t, t C N ,  v,(t)=J~2~,+t 
n ~ Z  

Theorem 3. Eq (Q0 ,p ,  ) = Eq(Qw,/2,),  i.e., a probability measure r 
on (X, .~ )  converges to the equilibrium r by the Markov system Qw iff it 
converges to the equilibrium/2~ by the dynamical  system Q, which means 
that 

r(a - 'B )  - -  ,/2.(B), VB C ~ (4.1 ')  
tt --~00 

and 

Proof. Let B --- B(k, m) be a cylinder; then 

/ 

Q~)(x, B) = Wtr = ~~ Ct~k+r+t)/2,~(B(k, k + r - 1)) r t B ( k + r  ' m ) ( X )  
r = l  

, (t) ~ (1 - v(t]m+t))U,~(B) 4- v ( k + t ) % a  tB ~- 

l 

(Qtwv)(B) = ~~ ~t~k+r+t,Ct,,(B(k, k + r - 1)) v(a-tB(k + r, m)) 
r = l  

+ v(t_~k+t)r(a-tB) + (1 -- v(tXm+t))/2,~(B) (4.2) 

One has v,(t)_t--,t~ )c,,, W) t--%_,~ ~,,. We shall prove the result by recursion 
on l = rn - k/> 0. If  l = 0, B = B(k, k), and 

(Q~vr)(B) = v(t_)k + , rta-tB(k, k )) p,(B(k, k )) + (1 - V~]k +t)) /2,~((k, k )) 

which converges to /2~(B) iff ( Q ~ r ) ( B ) =  r(a-tB)--*,_,o~/2,,(B). We suppose 
now that for all cylinders such that I '  ~< l -  1 the result is verified, and we 
shall prove it for l '  -- l. Since r > 1 by the hypothesis of  recursion we have 

/2,,(B(k, k + r - 1)) r(o - tB(k + r, m)) - )/2,~(B) 
r ~oo 

Using 
l 

2 r ) + ( 1 - ~ _ m ) = l - , ~ _ k  and v ~ t ) t - - , ) %  
r = l  t ~ o o  
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we conclude 

Qtwv(B) , U,~(B) iff v(a-tB(k, m)) 
n ~ 0 0  

, U,~(B(k, m)) 

Then 

r ~ Eq(Qw,U.) iff r E Eq(Q~,/.t~) 

Defining uniform probability measures with respect to ~z~ on the 
unstable fibers J?U~(x) one obtains a sequence of measures converging to a 
Dirac measure concentrated in x when k ~  oo. On the other hand, each 
measure of the sequence for finite k converges,to the equilibrium r by the 
temporal evolution of the system; consequently E q ~ , ,  Q~) = E q ~ ,  Qw) is a 
convex set which is not closed by weak convergence. By direct calculation 
one proves that the operator Qa acting on the set of probability measures 
p(X,B) is injective (one shows that Q A r =  Qar ' ,  r(B) = r ' (B),  VB C ~, by 
recursion on the length of B). But it is not surjective. Let r C p(X, B) and put 
h(r,B)=r(B)-(1--~,_rn)Ctn(B) for any cylinder B=B(k ,m) .  We define 
r ' (B(k, k ) ) =  ~_-~h(r, B(k, k)) and by recursion on the length of B: 

r ' (B(k, m)) 

= 2 Z ~  (h(r,B(k, m)) -- 
\ 

) Z r ' (B(k  + r, m))Ctm(B(k , k + r - 1)) )l,_(k+r ) 
r = l  

One can now prove that r C QA(,O(X, B)) iff r ' (B(k, m)) >/0, Vk ~< m. It is 
easy to prove that r '  defines a probability measure on ( X , ~ )  and by 
construction QAr'= r. Then QA(P(X, ~ ) )  is strictly contained in the set of 
measures with support in X and QA is not surjective. In fact it is enough to 
take for r a probability measure induced by a density of L 2 ~ )  which 
vanishes in a fixed cylinder. This example also shows that Qa (Eq(Q, , /~ ) )~ :  
Eq(Qw, p~). We see then that although Eq(Qo, p , )  = Eq(Qw,/z~) one cannot 
pass from one set to the other by the canonical operator induced by A. A 
study of the convergence of measures in relation to the definition of entropy 
functionals is given in Ref. 12. 
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